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Universidad Politécnica de Madrid, 28040 Madrid, Spain
3Center for Energy and Combustion Research University of California San Diego, La Jolla, CA 92093-0411, USA

Received: 7 May 1996; accepted in revised form 21 October 1996

Abstract. The chain-branching process leading to ignition in the hydrogen-air mixing layer is studied by application
of a novel WKB-like method with a four-step reduced scheme adopted for the chemistry description. Attention
is restricted to initial free-stream temperatures above the crossover temperature corresponding to the second
explosion limit of H2-O2 mixtures, thereby causing three-body recombination reactions to be negligible in the
ignition process. It is shown that the initiation reactions, responsible for the early radical buildup, cease being
important when the radical mass fractions reach values of the order of the ratio of the characteristic branching time
to the characteristic initiation time, a very small quantity at temperatures of practical interest. The autocatalytic
character of the chain-branching reactions causes the radical concentrations to grow exponentially with downstream
distance in the process that follows. It is shown that, because of the effect of radical diffusion, the radical growth
rate is uniform across the mixing layer in the first approximation, with an exponent given by that of a premixed
branching explosion evaluated at the location where the effective Damköhler number based on the flow velocity is
maximum. This exponent, as well as the leading-order representation of the radical profiles, are easily obtained by
the imposition of a bounded, nonoscillatory behavior on the solution.
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1. Introduction

The study of ignition in non-premixed reactive flows requires consideration of a number of
complicating effects that do not emerge when addressing premixed combustion. Clarification
of these effects can be aided by analysis of simplified flow-field models. Two such models
are the counterflow and co-flow laminar mixing layers, which result in ignition problems
with different mathematical characters [1, 2]. When a branching mechanism is involved, the
ellipticity associated with the counterflow configuration causes the branch of ignited solutions
to emerge as a bifurcation from the frozen state [3, 4]. In contrast, chain-branching ignition in
co-flow mixing layers is a parabolic problem that leads to a continuous growth of the radical
pool in a self-accelerating manner, observed in previous numerical studies [5, 6]. Although
some analytical work on chain-branching ignition in the hydrogen-air mixing layer has been
reported [7, 8], mixing-layer radical growth, in particular in relationship to the non-premixed
character of the flow field, remains poorly understood and is addressed here.

It is helpful initially to recall the solution for the simple premixed chain-branching explo-
sion [9]. Because of the autocatalytic nature of the process, with radical-production rates being
linearly proportional to radical concentrations, the radical pool exhibits an exponential growth
as time progresses, with an exponent proportional to the reaction-rate constant of the branching
step. Similarly, chain-branching explosions in premixed, isovelocity, one-dimensional streams
are characterized by an exponential increase of the radical pool with distance, linearly propor-
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tional to the reaction-rate constant and inversely proportional to the flow velocity. Application
of the same principle to the study of co-flow mixing layers encounters difficulties associated
with the spatial variations of stoichiometric ratio, temperature and flow velocities that appear
across the layer. Although one might expect the radical concentration to grow at each location
with a rate proportional to the local effective Damköhler number based on the flow velocity,
reactant concentration and temperature, this intuitive behavior soon breaks down because of
the effect of diffusion. With diffusion neglected, as distance increases, the maximum radical
concentration at the maximum local Damköhler number becomes exponentially large com-
pared with radical concentrations elsewhere, and the profile develops a sharp peak. Diffusion
of radicals to less populated regions then becomes more pronounced at this location, thus
rapidly smoothing the peak. The solution that emerges in the presence of diffusion, obtained
below by a WKB-like asymptotic technique, shows the following characteristics.

Diffusion prevents the radical profile from developing sharp peaks, and causes the expo-
nential growth rate at leading order to be constant everywhere. The value of the growth rate,
a quantity independent of radical diffusion in the first approximation, can be found as that of
a premixed chain-branching explosion evaluated where the ratio of the convective residence
time (proportional to the inverse of the local velocity) to the branching time is maximum.
In obtaining this constant value, we must impose a non-oscillatory behavior on the radical
profiles, determined already in the first approximation by a full balance between convection,
diffusion and chemical production. The resultant profiles peak at the location of maximum
local Damköhler number and decay exponentially to the sides. Analysis of the solution in
the vicinity of the maximum, which is a turning point of the WKB expansion, yields the
second-order correction to the growth rate as an eigenvalue in a linear eigenvalue problem.

Attention is restricted to hydrogen-air mixing layers with free-stream temperatures above
the crossover temperature corresponding to the second explosion limit of H2-O2 mixtures
[10]. Under those conditions, the effect of three-body recombination reactions is negligible,
and the two streams mix and react initially without significant heat release, thereby giving rise
to an approximately isothermal branched-chain explosion. In the early stages of the process,
radical concentrations are very low, and the slow initiation steps control the process. Very
soon the radical pool becomes large enough for the branching steps to take over, giving rise
downstream to exponentially increasing radical concentrations with the previously described
structure. This branching region ends where the radicals achieve their peak concentrations
corresponding to partial equilibrium of the shuffle reactions, ushering in a region of radical
recombination with significant heat release which leads to the development of a diffusion
flame, a process not addressed in the present paper.

Four-step reduced chemistry with H and O as chain-branching species [4] will be employed.
Description of the process of rapid radical growth will be obtained by means of an appropriate
WKB method, involving exponential expansions for the radical concentrations in a series of
decaying powers of the streamwise distance. In particular, the leading-order growth rate and
radical profiles will be determined. A more complete analysis, including calculation of the
second-order growth rate, will be performed for three-step chemistry with H atoms being the
only chain-branching species not in steady state, and the results will be shown to compare
well with those of numerical integrations of the full H-atom conservation equation.
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2. Reduced kinetic mechanism and formulation

In high-temperature ignition the concentration of H2O2 remains negligibly small and the eight

elementary steps H2+O2
0
!OH+OH;H2+O2

1
!HO2+H;H+O2

2
!OH+O;H2+O 3

!OH+

H;H2+OH 4
!H2O+H;HO2+H 5

!H2+O2;HO2+H 6
!OH+OH and H+O2+M 7

!HO2+M
suffice to describe the chain-branching process in premixed [10] and non-premixed systems
[4]. If the initial temperature is sufficiently above crossover, which is the case considered

in the present study, then the rate corresponding to the reaction H + O2 + M 7
!HO2 + M is

negligible compared to that of the reaction H+O2
2
!OH+O and radical recombination can be

neglected in the first approximation. Under those conditions, the concentration of hydroperoxyl

radicals, whose production is then restricted to the slow initiation step H2 + O2
1
!HO2 + H,

remains negligibly small, and reactions HO2 + H 5
!H2 + O2 and HO2 + H 6

!OH + OH can
be removed from the mechanism. Furthermore, since most of the heat released in hydrogen-
oxygen combustion is associated with three-body radical recombinations, far above crossover
the resultant branch-chained explosion becomes a nearly isothermal process.

An additional simplification follows from the assumption that the OH radical maintains
steady state everywhere, an assumption valid for configurations which are not too fuel lean that
was previously utilized in analyses of ignition in counterflow systems [4, 11]. The introduction
of this steady-state assumption reduces the mechanism to the four-step description

3H2 + O2 ! 2H + 2H2O; H2 + O2 ! H + HO2;

H2 + O2 ! O + H2O; 2H2 + O2 ! 2H + H2O;

with global rates given by !0; !1; !2 and !3. Here, !j denotes the rate corresponding to
the elementary step j. The reaction-rate constants corresponding to steps 0–3 are of the
form kj = AjT

nj exp[�Ej=(R
oT )], where Ro is the universal gas constant, Updated values

of the different reaction-rate parameters in mol/cm3, s�1, K and cal/mol are [11] A0 =

1.7 � 1013; A1 = 13.8 � 1013; A2 = 3.52 � 1016; A3 = 5.06 � 104; n0 = 0; n1 = 0; n2 =

�0.7; n3 = 2.67; E0 = 47780; E1 = 59607; E2 = 17070 and E3 = 6290.
We consider a laminar mixing layer consisting of two parallel streams, one of hydrogen

diluted with nitrogen and the other of air. In the formulation, x and y will be the coordinates
in the streamwise and transverse directions, with u and v being their corresponding velocity
components. The air and fuel streams occupy initially the upper (y > 0) and lower (y < 0)
sides, merging at x = 0 where mixing and reaction begin. The subscripts 1 and �1 will
denote free-stream conditions on the air and fuel sides, respectively. We shall assume, for
simplicity, that density and transport properties are constant. For the flow considered, there
exist self-similar solutions for the velocity field and for the frozen reactant concentrations
and frozen temperature distribution, which are obtained by use of a similarity coordinate
� = [�u1=(2�)]1=2y=x1=2 and a nondimensional stream function F (�), such that u = u1F

0

and v = [�u1=(2�x)]1=2(�F 0
� F ), where the prime denotes differentiation with respect to

� and � and � are the density and viscosity of the mixture [9]. With these new variables, the
governing boundary-layer equations for the mixing layer with N different reactive species
become

F 000 + FF 00 = 0; (1)

2xF 0
@Yi

@x
� FY 0

i �
1
Si
Y 00

i =
2x
�u1

wi (2)
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2xF 0
@�

@x
� F�0 �

1
Pr
�00 = �

2x
cpT1�u1

NX
i=1

hoiwi; (3)

where � = (T � T1)=T1 is an appropriate nondimensional temperature defined with respect
to the air-side temperature, cp is the specific heat at constant pressure of the mixture, Pr
= �cp=� is the Prandtl number and Yi; Si = �=(�Di); wi and hoi are the mass fraction,
Schmidt number, mass rate of production and enthalpy of formation of species i, respectively.
The transport coefficients � andDi correspond to the thermal conductivity of the mixture and
the binary diffusion coefficient of species i.

Equations (1)–(3) must be integrated subject to the boundary conditions F 0 = 1; Yi = Yi1
and � = 0 at � =1; F 0 =  = u�1=u1; Yi = Yi�1 and � = ��1 = (T�1 � T1)=T1 at
� = �1 and F = 0 at � = 0. In addition to the above boundary conditions, we must provide
initial conditions for the integration of Equations (2) and (3) given by the uniform free-stream
profiles Yi = Yi1 and � = 0 for � > 0 and Yi = Yi�1 and � = ��1 for � < 0. Note that,
with the simplifying assumptions introduced, Equation (1) is decoupled and can be integrated
separately to yield the self-similar solution for the velocity profile.

Because of the autocatalytic exponential radical growth with distance that characterizes
chain-branching ignition, the effect of reactant consumption is only important close to the
ignition point at which the radical concentrations reach the values corresponding to partial
equilibrium of the shuffle reactions. Also, in this high-temperature regime heat release is only
significant downstream of this ignition point. Hence, the ignition distance can be determined in
the first approximation by integration of the H-atom and O-atom conservation equations with
the chemical terms evaluated with frozen reactant concentrations and frozen temperature �f. To
write these equations, it is convenient to define normalized H-atom and O-atom mass fractions
yH = (4k21)=(2k01 + k11)(YH=YH2�1) and yO = (4k21)=(2k01 + k11)(YO=YO21),
together with a new streamwise coordinate � = (2�YO21k21)=(y1WO)x scaled with the
characteristic air-side branching distance. With these new variables, the radical conservation
equations with the Frank-Kamenetskii approximation adopted for the reaction-rate constants
become

2�F 0
@yH

@�
� Fy0H �

1
SH

y00H = �[exp( ���f )yO2fyH2f + r exp(�3�f )yH2fyO] (4)

and

2�F 0
@yO

@�
� Fy0O �

1
SO

y00O = �s[exp(�2�f )yO2fyH � r exp(�3�f )yH2fyO]; (5)

with boundary conditions yH = yO = 0 at � = 0 and at � > 0; � = �1. Here, yO2f
and yH2f are the frozen reactant concentrations normalized with their free-stream values,
�j = Ej=(R

oT1) is the nondimensional activation energy of reaction j; �� is an average of
�0 and �1; s = (WOYH2�1)=(WH2YO21) is an appropriate oxygen-to-fuel mass ratio, with
Wi denoting the molecular weight of species i(s = 8=0.23 for undiluted fuel with air), and
r = k31=k21 ' 2.9 is the reaction-rate ratio corresponding to the controlling branching
steps.

3. The chain-branching explosion

In the formulation employed, the ratio (2k01+k11)=k21 is used as a scale for the radical mass
fractions. This quantity, typically extremely small with values at T1 = 1200 and T1 = 2000
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given approximately by 3.6� 10�7 and 10�4, is a measure of the characteristic radical mass
fraction for which the rates of the initiation and branching steps are equal. Use of this scaling
helps to expose the different characteristic regions that appear in the chain-branching explosion
as mixing and reaction proceed.

In the early stages of the chain-branching process the rates of the branching reactions,
which are proportional to the concentrations of radicals, are very small, and radical growth
depends mainly on the initiation reactions. This initiation-controlled region corresponds to
radical mass fractions smaller than the quantity (2k01 + k11)=k21 and, consequently, to
values of yH and yO smaller than unity. Correspondingly, the streamwise extent of this region
is such that � � 1, as can be seen from Equation (4). Observation of Equations (4) and (5)
reveals that the initial growth of the radical pool is such that yH / �, whereas the mass
fraction of O atoms, whose production is mainly controlled by step 2, remains smaller, with a
streamwise variation given by yO / �2. This initial region ends when the radical mass fractions
reach small values of order (2k01 + k11)=k21. In the following intermediate region, which
corresponds to values of yH; yO and � of order unity, all transport and chemical terms in (4)
and (5) are equally important. The effect of initiation ceases being significant as the radical
mass fractions increase to values large compared to (2k01+k11)=k21. Further downstream,
only branching steps must be retained in the mechanism to study the process of rapid radical
growth that occurs. Since the values of the radical mass fractions corresponding to partial
equilibrium of the shuffle reactions are typically of order unity, the values of yH and yO at the
ignition point are large quantities of characteristic value k21=(2k01+k11). Correspondingly,
the ignition point is located at a value of the streamwise coordinate � much larger than unity,
and the asymptotic behavior of the solution for large values of � must be considered if a
simplified expression for the ignition distance is to be obtained.

The linearity of (4) and (5) suggests that the solution to the homogeneous parabolic
problem that results from removing the initiation term can be approximated for large values
of � by exponential series of the WKB type [12] of the form exp [��1

n=0�
�n=2Gn(�)]. In this

approximation, we must choose the exponentially large terms in the expansions for yH and
yO to be equal, so that the transport and chemical terms in Equations (4) and (5) can balance
everywhere. Neglecting small terms of order ��1=2 in the approximated series, we obtain

yH

�H(�)
=

yO

�O(�)
= exp[�G0(�) + �1=2G1(�)]: (6)

Introducing the above expressions into (4) and (5) and collecting terms of the same order in
powers of �, we can solve the problem sequentially as follows.

At leading order, �2, diffusion dominates, giving the single-term equation

G
02
0 = 0: (7)

This corresponds to the previously mentioned effect of diffusion. If G0 were a function of
�, then it would present a maximum at a certain location, where radical profiles would tend
to grow faster in the limit of large streamwise distances. The associated large concentration
gradients that would emerge in this region of rapid growth would readily enhance radical
diffusion towards more diluted regions, resulting in a larger growth rate there. The overall effect
of this equalizing mechanism is to cause the radical pool to grow in the first approximation
with uniform exponential rate G0, which will be determined below by carrying the analysis
to a higher order.
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The equation that emerges at the next order (�3=2),

G0

0G
0

1 = 0; (8)

is satisfied identically for any constant value of G0, while the terms of order � yield the
homogeneous linear system of equations

[2F 0G0 � (SH)
�1G

02
1 ]�H � r exp(�3�f )yH2f�O = 0;

�s exp(�2�f )yO2f�H + [2F 0G0 � (SO)
�1G

02
1 + rs exp(�3�f )yH2f ]�O = 0;

(9)

which must satisfy the boundary conditions �H = �O = 0 at � = �1. Existence of nontrivial
solutions to this problem requires that the determinant of the coefficient matrix associated with
the above system of equations must vanish everywhere. This condition provides the quadratic
equation for G

02
1

G
04
1 � [2(SH + SO)G0F

0 + SOrs exp(�3�f )yH2f ]G
02
1

+2SHSOG0F
0[2G0F

0 + rs exp(�3�f )yH2f ]

�SHSOrs exp(�2�f ) exp(�3�f )yO2fyH2f = 0; (10)

which can easily be solved to yield two different solutions for G
02
1 . It can be shown that one

of the resultant solutions never vanishes for any positive value of G0, thereby giving two G1

profiles monotonically increasing or decreasing with �. This behavior is not compatible with
the boundary conditions yH = yO = 0 at � = �1 and, therefore, these two solutions must
be disregarded. The number of locations where the other solution for G

02
1 vanishes, which

are turning points of the WKB expansion [12], depends on the value of G0 as can be seen
from Equation (10). If the value of G0 is large enough, then no turning points appear, and the
resulting solutions for G1 would either increase or decrease monotonically with �, which is
not acceptable as previously explained. For values of G0 smaller than a critical value G�

0 the
solution would exhibit two turning points, between which the resultant radical profiles would
be oscillatory. It can be shown that the number of extrema of the profiles solutions to (4) and
(5) remains constant as � increases. Since the initiation reaction causes the radical profiles to
posses a single maximum in the initial stages of the chain-branching explosion, oscillatory
behaviors cannot develop, thus preventing the existence of two turning points across the
mixing layer. Therefore, the asymptotic solution that emerges must present a single turning
point, a condition that determines uniquely the value of G�

0. We calculated this value, as well
as the location of the turning point ��, from simultaneous solution of the equations

G�

0F
0 = 1

4frs exp(�3�f )yH2f ([4 exp(�2�f )yO2f=(rs exp(�3�f )yH2f ) + 1]1=2
� 1)g; (11)

G�

0F
00 = 1

4frs exp(�3�f )yH2f ([4 exp(�2�f )yO2f=(rs exp(�3�f )yH2f ) + 1]1=2
� 1)g0; (12)

obtained from (10) by imposing the merging to a single turning point. The corresponding
value of the function G

02
1 is positive everywhere except at ��, where it presents a single zero.

The boundary conditions at � = �1 indicate that we must choose the positiveG0

1 to describe
the solution for � < �� and, similarly, the negative G0

1 as � ! 1, with transition between
both solutions taking place at the turning point, where the radical profiles peak.
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To clarify the physical significance of this result, we must notice that the left-hand side
of (11) is inversely proportional to the local residence time of the flow, whereas its right-
hand side, a function that exhibits a maximum at an intermediate position across the mixing
layer and decays exponentially as the free-stream boundaries are approached, is inversely
proportional to the local effective chemical time corresponding to the reaction mechanism
considered. Therefore, imposing Equations (11) and (12) amounts to saying that the leading-
order exponential growth rate G�

0, which is constant across the mixing layer, corresponds to
that of the maximum local effective Damköhler number based on the flow velocity, indicating
that radical diffusion does not affect the chain-branching rate in the first approximation.
Although this convection-controlled behavior of chain-branching processes in non-premixed
mixing layers was previously pointed out by Treviño and Liñán [7], their conclusion arose
from observation of numerical integrations of the conservation equations, rather than from a
rigorous mathematical analysis as the one presented here.

The above analysis leading to (11) and (12) can be further clarified when we consider the
evolution of the radical pool if radical diffusion were artificially removed from the system. In
that case, radical growth would proceed independently at each location across the mixing layer.
Determination of the radical-concentration evolution at each value of � would involve solution
of the homogeneous system of equations given by (9) with the diffusion terms neglected,
yielding a quadratic characteristic equation for G0, containing only the last two terms in (10),
which possesses a positive and a negative root. Whereas the positive root, given in Equation
(11), corresponds to a growing solution that dominates the radical-growth process as the flow
proceeds downstream, the negative root gives an exponentially decreasing contribution to the
radical concentration which can be neglected to study the asymptotic behavior for large values
of �, as it was done here in deriving (11) and (12), where negative values of G0 were not
considered. It is worth remarking that retaining this exponentially decreasing solution would
be necessary to describe the transition of the solution from the initiation-controlled region
to the region of autocatalytic exponential growth. Therefore, Equation (11) yields for each
value of � the exponential radical-growth rate with downstream distance corresponding to a
branched-chain explosion for a flow with velocity, temperature and composition evaluated
at �. Combining this result with the condition that G�

0 must be maximum, which follows
from Equation (12), we can conclude as before that, at leading order, the uniform exponential
growth rate with downstream distance in the nonpremixed co-flow mixing layer is that of a
premixed chain-branching explosion evaluated at the location across the mixing layer where
the explosion distance is minimum.

Once Equations (11) and (12) are solved for G�

0 and ��, we can integrate the function G0

1
obtained from (10) to find the asymptotic form of the radical profiles. However, the maximum
value, G�

1 = G1(�
�), of G1 remains undetermined in the integration. We need to resolve the

structure of the turning point in order to find this value as shown below. Although the explicit
determination of the functions �H and �O requires that we carry the analysis to a higher order,
solution to the homogeneous system given in (9) provides the ratio �O=�H.

4. WKB analysis with three-step simplified chemistry

Except for very dilute fuel feed, the previously defined oxygen-to-fuel mass ratio s takes very
large values, causing the rates of production and consumption of O atoms to be much larger
than the corresponding transport rates over most of the mixing layer, as can be seen from
Equation (5). In this case, we can simplify the chemistry description further by assuming
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that the O radicals are in steady state, an assumption that fails far into the air side, where
the fuel concentration becomes too limited to maintain the O-atom consumption rate as
explained elsewhere [4]. Introducing this assumption, we leave the H atom as the only chain-
branching species not in steady state, thus reducing the chemistry to the three-step description
3H2 + O2 ! 2H + 2H2O;H2 + O2 ! H + HO2 and 3H2 + O2 ! 2H + 2H2O, with global
rates !0; !1 and !2. The problem then reduces to the integration of the radical conservation
equation

2�F 0
@yH

@�
� Fy0H �

1
SH

y00H = �[exp( ���f )yO2fyH2f + exp(�2�f )yO2fyH] (13)

with the boundary conditions stated after Equation (5). As before, introducing the expression
given in (6) into the above equation with the initiation term neglected givesG0

0 = 0 at leading
order, while collecting terms of order �, we find

G0

1 = �S
1=2
H [2F 0G0 � yO2f exp(�2�f )]

1=2: (14)

The value of G�

0 and the turning-point location are now obtained by the solution of 2F 0G�

0 =

yO2f exp(�2�f ) and 2F 00G�

0 = [yO2f exp(�2�f )]
0, which corresponds to the limiting form

of (11) and (12) for large values of s. With the kinetic mechanism considered, the branching
rate is independent of the H2 concentration. The resultant local Damköhler number, i.e. the
ratio y�2f exp(�2�f )=F

0, is always maximum at � = 1 for free-stream temperatures such
that ��1 6 0. This results in turning points located at � = 1, where the fuel concentration
is infinitely small and the O-atom steady state fails. This behavior was analyzed elsewhere
[7]. Hence, the validity of this simplified model is restricted to configurations with fuel-
side temperatures sufficiently larger than the corresponding air-side temperatures to give
maximum branching rates and turning points at finite locations across the mixing layer. Under
those conditions, the kinetic mechanism holds in the region where the H-atom profile peaks,
with the O-atom steady state breaking down far from this point, thereby introducing only
relatively small inaccuracies in the results. It is worth pointing out that the one-step reduced
scheme would also be adequate for the analysis of chain-branching ignition in wakes, for
which velocities are minimum in the center region and become larger as � ! �1. In such
flows the local residence time decreases as we move away from the center region, and ignition
always occurs at a finite location where the local effective Damköhler number is maximum.

The asymptotic solution described here holds away from the turning point, but breaks down
in the vicinity of � = ��, where the H-atom mass fraction must evolve from an exponentially
growing solution as � ! �� to an exponentially decaying profile for � > ��. The analysis of
this transition region, which is briefly sketched below, provides the second-order correction
to the growth rate G�

1. Introducing a stretched coordinate � = (4aSH)
1=4(� � ��)�1=4 and a

new function  (�) given by yH =  (�) exp[�G�

0 + �1=2G�

1] into Equation (13), we obtain the
parabolic cylinder equation (13)

@2 

@�2 �

 
�2

4
+�

!
 = 0; (15)

where a = [2F 0G�

O � yO2f exp(�2�f )]
00=2 and � = (SH=a)

1=2F 0G�

1=2, with the functions
F 0 and [2F 0G�

O � yO2f exp(�2�f )]
00 being evaluated at � = ��. The solution to Equation (15)
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Figure 1. Comparison of the evolution of yH max with � for ��1 = 0.3 obtained from integration of Equation (13)
(lines) with the leading-order yH max = exp(G�

0 �) (rhomboids) and second-order yH max = exp(G�

0 � + G�

1 �
1=2
)

(crosses) predictions of the asymptotic analysis; the inset shows the same comparison for log(yH max)=�.

must be non-negative and decay exponentially to zero as � ! �1 to match with the H-atom
profiles corresponding to the WKB expansion. This behavior that can only be achieved for

� = � 1
2 ; (16)

giving an associated eigenfunction

 = exp(��2=4): (17)

Therefore, Equation (16), together with the definition of the parameter�, determines uniquely
the negative value of G�

1 once the location of the turning point �� has been obtained. This
negative value reflects the influence of radical diffusion on the branching process, causing the
maximum radical concentration to increase at a smaller rate, which is an effect that is not seen
in the leading-order solution. It must be noticed that, to discriminate the solution � = �1=2
from the discrete set of eigenvalues that satisfy (15) with boundary conditions  (�1) = 0,
we must impose a nonnegativity constraint on the solution. This constraint is associated with
the absence of oscillatory radical profiles, a criterion that is also used at leading order to
determine the value of G�

0. Clearly, the imposition of a nonoscillatory behavior is a key part
of the asymptotic solution presented here, providing consistency to the method and enabling
the analysis to be extended to an arbitrarily high order.

As an example, we compare in Figure 1 the leading-order yH max = exp(G�

0�) and second-
order yH max = exp(G�

0� +G�

1�
1=2) asymptotic predictions for ��1 = 0.3 and a free-stream

velocity ratio  = 1 with the results obtained by integration of (13) with �� = 0. Included in
an inset is also the comparison of the numerical value of log(yH max)=� with the first-order
and second-order asymptotic predictions G�

0 and G�

0 + G�

1�
�1=2. In this isovelocity case the

turning point is located where the function yO2f exp(�2�f ) exhibits a maximum. Choosing
Pr = 0.74; SO2 = 0.74 and �2 = 7, we find a maximum value yO2f exp(�2�f ) ' 1.43 located
at �� ' �0.07, with a corresponding leading-order growth rateG�

0 ' 0.715. The second-order
growth rateG�

1 ' �1.7571 is then determined from the curvature of the yO2f exp(�2�f ) profile
at � = �� withSH = 0.12. As can be seen, the effect of radical diffusion on the chain-branching
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rate, which is present in the second-order asymptotic prediction yH max = exp(G�

0�+G�

1�
1=2)

through the negative value of G�

1, is non-negligible if an accurate prediction of the ignition
distance is to be obtained. Although an extension of the asymptotic analysis to a higher
order would certainly improve the agreement with the results of the numerical integrations,
the second-order approximation presented here already gives accuracies of ignition distances
better than 10%, as can be seen in the figure.

5. Discussion and conclusions

The asymptotic analysis of the ignition process in laminar mixing layers presented above is
based on the fact that the characteristic reaction time of the chain-branching reactions is very
small compared with that of the initiation reactions, so that the latter only play a significant
role when the mass fraction of the radicals is very small, namely of the order of the ratio of
the reaction times. The main exponential growth of the radical mass fraction is due to the
chain-branching reactions. The analysis shows that the mass fraction of H in the long ignition
stage is given by the expression

YH

YH2�1

=
2k01 + k11

4k21
�H exp

�
�G�

0 + �1=2
�
G�

1 +

Z �

��
G0

1 d�
��

; (18)

where � = (2�YO21k21)=(u1WO)x and G�

0; G
�

1; G
0

1(�) and �H are of order unity. The
values of G�

0 and G0

1(�), providing the leading-order representation for large � of the peak
radical concentration and concentration profiles, are easily determined in terms of the frozen
concentration and temperature profiles in the mixing layer.

The linear chain-branching ignition stage ends at a streamwise location �I such that
YH=YH2�1 is of order unity. This �I is given in the first approximation by the relation.

�I =
log[4k21=(2k01 + k11)]

G�

0
; (19)

obtained from (18). The constant G�

0 is the maximum value of the local effective Damköhler
number, represented by the right-hand side of (11) divided by the local flow velocity F 0.
Notice that if errors of order �1=2

I are accepted in the determination of the large value �I of the
ignition-delay length, this length corresponds to the minimum delay length obtained, with the
effect of radical diffusion neglected, across the chemically frozen mixing layer. The effects of
conduction and diffusion enter obviously in the determination of the self-similar temperature
and reactant concentration profiles.

We have seen that the computation of �I with errors of order unity, which correspond
to small relative errors of order ��1

I , requires resolving the structure of the turning point
where the radical profiles peak. Such an analysis is performed here for three-step reduced
chemistry. This is a simplified scheme whose validity is restricted to configurations with
fuel-side temperatures larger than the corresponding air-side temperatures. Solution of the
turning-point structure that emerges when four-step reduced chemistry is employed would
be necessary for obtaining accurate predictions of ignition distances in applications in which
cold hydrogen is injected into a hot stream of air.

The analysis presented here can also be applied to the study of ignition events in mixing
layers when wake effects are significant. In general, when two parallel streams merge at the end
of a separating plate, there exists a momentum-deficit region in the vicinity of the trailing edge
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where a longer residence time is available for chemical reactions to occur. The importance
of the wake effect in the overall chain-branching process depends on the relative values of
the characteristic branching time and characteristic residence time associated with this region.
If attention is restricted to the study of self-similar regions such as the Goldstein [14] and
Rott-Hakkinen [15] regions, then the necessary radical-growth analysis would be analogous
to the one presented here. It can be anticipated that, since the wake velocity increases with
the one-third power of the streamwise distance, the radical mass fractions in these regions
would be proportional to exp(�2=3G�

0), where � is an appropriate nondimensional streamwise
distance andG�

0 is the maximum effective Damköhler number across the wake. In determining
the value of G�

0 one must account for the large velocity variations that exist within the wake.
The present study contributes new information of two types concerning high-temperature

ignition in laminar hydrogen-air mixing layers relevant to conditions like those encountered
in supersonic-combustion applications. The results improve knowledge of the physics of the
process by showing how radical diffusion introduces uniformity of radical-pool growth across
the mixing layer in the first approximation, leading to ignition distances independent of radical
diffusion coefficients and proportional to the flow velocity. The analysis also shows for the
first time how mathematical methods based on the WKB approach can be applied to such
problems through suppression of oscillatory components.

Acknowledgements

The work of A. L. Sánchez was supported by the Spanish DGICYT under Contract No.
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